控制寄存器(CR0~CR3)用于控制和确定处理器的操作模式以及当前执行任务的特性,如图4-3所示。CR0中含有控制处理器操作模式和状态的系统控制标志;CR1保留不用;CR2含有导致页错误的 ;CR3中含有页目录表 基地址,因此该寄存器也被称为页目录基 PDBR(Page-Directory Base address Register)。
控制寄存器
1 . CR0 中协处理器控制位
CR0的4个位:扩展类型位ET、任务切换位TS、仿真位EM和数学存在位MP用于控制80x86浮点(数学) 的操作。有关 的详细说明请参见第11章内容。CR0的ET位(标志)用于选择与 进行通信所使用的协议,即指明系统中使用的是80387还是80287 。TS、MP和EM位用于确定浮点指令或WAIT指令是否应该产生一个设备不存在(Device Not Available,DNA)异常。这个异常可用来仅为使用 的任务保存和恢复 。对于没有使用 的任务,这样做可以加快它们之间的切换操作。
(1)ET:CR0的位4是扩展类型(Extension Type)标志。当该标志为1时,表示指明系统中有80387 ,并使用32位协处理器协议。ET=0指明使用80287协处理器。如果仿真位EM=1,则该位将被忽略。在处理器复位操作时,ET位会被初始化指明系统中使用的 类型。如果系统中有80387,则ET被设置成1,否则若有一个80287或者没有协处理器,则ET被设置成0。
(2)TS:CR0的位3是任务已切换(Task Switched)标志。该标志用于推迟保存任务切换时的协处理器内容,直到新任务开始实际执行协处理器指令。处理器在每次任务切换时都会设置该标志,并且在执行协处理器指令时测试该标志。
如果设置了TS标志并且CR0的EM标志为0,那么在执行任何协处理器指令之前会产生一个设备不存在异常。如果设置了TS标志但没有设置CR0的MP和EM标志,那么在执行协处理器指令WAIT/FWAIT之前不会产生设备不存在异常。如果设置了EM标志,那么TS标志对 指令的执行无影响,见表4-1。
表4-1 CR0中标志EM、MP和TS的不同组合对协处理器指令动作的影响
CR0中的标志 | 指令类型 | |||
EM | MP | TS | 浮点 | WAIT/FWAIT |
0 | 0 | 0 | 执行 | 执行 |
0 | 0 | 1 | 设备不存在(DNA)异常 | 执行 |
0 | 1 | 0 | 执行 | 执行 |
0 | 1 | 1 | DNA异常 | DNA异常 |
1 | 0 | 0 | DNA异常 | 执行 |
1 | 0 | 1 | DNA异常 | 执行 |
1 | 1 | 0 | DNA异常 | 执行 |
1 | 1 | 1 | DNA异常 | DNA异常 |
在任务切换时,处理器并不自动保存 的上下文,而是会设置TS标志。这个标志会使得处理器在执行新任务 的任何时候遇到一条 指令时产生设备不存在异常。设备不存在异常的处理程序可使用CLTS指令清除TS标志,并且保存 的上下文。如果任务从没有使用过 ,那么相应协处理器上下文就不用保存。
(3)EM:CR0的位2是仿真(EMulation)标志。当该位设置时,表示处理器没有内部或外部 ,执行协处理器指令时会引起设备不存在异常;当清除时,表示系统有协处理器。设置这个标志可以迫使所有浮点指令使用软件来模拟。
(4)MP:CR0的位1是监控协处理器(Monitor coProcessor或Math Present)标志。用于控制WAIT/FWAIT指令与TS标志的交互作用。如果MP=1、TS=1,那么执行WAIT指令将产生一个设备不存在异 常;如果MP=0,则TS标志不会影响WAIT的执行。
2 . CR0 中保护控制位
(1)PE:CR0的位0是启用保护(Protection Enable)标志。当设置该位时即开启了保护模式;当复位时即进入实地址模式。这个标志仅开启段级保护,而并没有启用 机制。若要启用 机制,那么PE和PG标志都要置位。
(2)PG:CR0的位31是分页(Paging)标志。当设置该位时即开启了分页机制;当复位时则禁止分页机制,此时所有 等同于 。在开启这个标志之前必须已经或者同时开启PE标志。即若要启用分页机制,那么PE和PG标志都要置位。
(3)WP:对于Intel 80486或以上的CPU,CR0的位16是 (Write Proctect)标志。当设置该标志时,处理器会禁止 程序(例如 0的程序)向用户级只读页面执行写操作;当该位复位时则反之。该标志有利于UNIX类操作系统在创建进程时实现写时复制(Copy on Write)技术。
(4)NE:对于Intel 80486或以上的CPU,CR0的位5是 错误(Numeric Error)标志。当设置该标志时,就启用了x87 错误的内部报告机制;若复位该标志,那么就使用PC形式的x87协处理器 机 制。当NE为复位状态并且CPU的IGNNE输入引脚有信号时,那么数学协处理器x87错误将被忽略。当NE为复位状态并且CPU的IGNNE输入引脚无 信号时,那么非屏蔽的数学协处理器x87错误将导致处理器通过FERR引脚在外部产生一个中断,并且在执行下一个等待形式浮点指令或WAIT/FWAIT 指令之前立刻停止指令执行。CPU的FERR引脚用于仿真外部 80387的ERROR引脚,因此通常连接到中断控制器输入请求引脚上。NE标志、IGNNE引脚和FERR引脚用于利用外部逻辑来实现PC形式的外部 机制。
启用保护模式PE(Protected Enable)位(位0)和开启 PG(Paging)位(位31)分别用于控制分段和分页机制。PE用于控制分段机制。如果PE=1,处理器就工作在开启分段机制环境下,即运行在保护模式下。如果PE=0,则处理器关闭了分段机制,并如同8086工作于实地址模式下。PG用于控制 机制。如果PG=1,则开启了 机制。如果PG=0, 机制被禁止,此时 被直接作为 使用。
如果PE=0、PG=0,处理器工作在实地址模式下;如果PG=0、PE=1,处理器工作在没有开启 机制的保护模式下;如果PG=1、PE=0,此时由于不在保护模式下不能启用分页机制,因此处理器会产生一个一般保护异常,即这种标志组合无效;如果PG=1、PE=1,则处理器工作在开启了分页机制的保护模式下。
当改变PE和PG位时,必须小心。只有当执行程序至少有部分代码和数据在线性地址空间和物理地址空间中具有相同地址时,我们才能改变PG位的设置。此时这部分具有相同地址的代码在 和未分页世界之间起着桥梁的作用。无论是否开启分页机制,这部分代码都具有相同的地址。另外,在开启分页(PG=1)之前必须先刷新页高速缓冲TLB。
在修改该了PE位之后程序必须立刻使用一条跳转指令,以刷新处理器执行管道中已经获取的不同模式下的任何指令。在设 置PE位之前,程序必须初始化几个系统段和控制寄存器。在系统刚上电时,处理器被复位成PE=0和PG=0(即实模式状态),以允许引导代码在启用分段和 分页机制之前能够初始化这些寄存器和数据结构。
3 . CR2 和 CR3
CR2和CR3用于分页机制。CR3含有存放页目录表页面的物理地址,因此CR3也被称为PDBR。因为页目录表页面是页对齐的,所以该寄存器只有高20位是有效的。而低12位保留供更高级处理器使用,因此在往CR3中加载一个新值时低12位必须设置为0。
使用MOV指令加载CR3时具有让页高速缓冲无效的副作用。为了减少地址转换所要求的 数量,近几天访问的页目录和 会被存放在处理器的页高速缓冲器件中,该缓冲器件被称为转换查找缓冲区(Translation Lookaside Buffer,TLB)。只有当TLB中不包含要求的 项时才会使用额外的 从内存中读取页表项。
即使CR0中的PG位处于复位状态(PG=0),我们也能先加载CR3。以允许对 机制进行初始化。当切换任务时,CR3的内容也会随之改变。但是如果新任务的CR3值与原任务的一样,处理器就无需刷新页高速缓冲。这样共享 的任务可以执行得更快。
CR2用于出现页异常时报告出错信息。在报告页异常时,处理器会把引起异常的 存放在CR2中。因此操作系统中的页 程序可以通过检查CR2的内容来确定 空间中哪一个页面引发了异常。